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Abstract—In this paper, we investigate streaming codes over a
three-node relay network. Source node transmits a sequence of
message packets to the destination via a relay. Source-to-relay
and relay-to-destination links are unreliable and introduce at
most N1 and N2 packet erasures, respectively. Destination needs
to recover each message packet with a strict decoding delay
constraint of T time slots. We propose streaming codes under this
setting for all feasible parameters {N1, N2, T}. Relay naturally
observes erasure patterns occurring in the source-to-relay link.
In our code construction, we employ a channel-state-dependent
relaying strategy, which rely on these observations. In a recent
work, Fong et al. provide streaming codes featuring channel-
state-independent relaying strategies, for all feasible parameters
{N1, N2, T}. Our schemes offer a strict rate improvement over
the schemes proposed by Fong et al., whenever N1 < N2.

I. INTRODUCTION

Reliable communication with low-latency is critical in
many applications, such as audio/video streaming, virtual gam-
ing and tele-medicine. Data packets, which are generated in a
sequential fashion, need to be communicated to the receivers
over an unreliable packet erasure channel, with strict decoding
deadlines. Due to high round-trip delays, methods involving
retransmission, such as automatic repeat request (ARQ) are not
suitable. For that reason, the literature has considered forward
error correction (FEC) schemes a more appropriate solution. In
particular, recent literature has studied streaming codes, which
are packet-level FECs designed to ensure reliability against
packet erasures under a tight decoding delay constraint.

The first paper to consider such codes was [1], where the
authors study a point-to-point system consisting of a source
and destination. In this work, the authors consider streaming
codes which tolerate a packet erasure burst of length at most B
and derive an upper bound on the achievable rate of streaming
codes. A family of optimal codes, namely, maximally-short
codes have been proposed for a wide range of parameters
{B, T}. In a subsequent work [2], the authors prove tightness
of the rate upper bound in [1] by providing optimal streaming
codes for all {B, T}. Badr et al. considers a more general,
sliding-window-based, packet erasure model where, in any
sliding window of W consecutive time slots, there can be
either (i) at most N erasures at arbitrary positions or else (ii)

1 Equal contribution.

an erasure burst which affects at most B consecutive time
slots. The paper provides a rate upper bound for streaming
codes over the sliding window model and also proposes near-
optimal streaming codes. The works [3]–[6] provide rate-
optimal streaming codes under the sliding window erasure
model. There are several works such as [7]–[10] which study
various other models for low-delay communication systems.
In contrast to the existing literature which focusses on point-
to-point networks, our focus in this paper is on a topology
introduced in a recent paper [11]. Fong et al. [11] propose a
generalization of the point-to-point networks to a three-node
architecture for streaming codes, which consists of a source,
a relay and a destination. This kind of a topology is often
present in content delivery networks [11], [12]. An extension
of the three-node relay network to a multi-hop network may
be found in [13].

In [13], the authors introduce the concept of a channel-state-
dependent streaming code, in which the relays adapt to the
erasure pattern observed. In this paper, we show that this idea
can be used to improve the rate previously presented in [11]
for the three-node network. Note that, although the general
idea of state dependent codes was presented in [13], using it
to actually improve the rate still requires novel ideas, which
are highlighted in Section III.

II. SETTING

In this section, we formally introduce the problem setting.
We use the following notation throughout the paper. The set
of non-negative integers is denoted by Z+. The finite field
with q elements is denoted by Fq . The set of l-dimensional
column vectors over Fq is denoted by Fl

q . For a, b ∈ Z+, we
use [a : b] to denote {i ∈ Z+ | a ≤ i ≤ b}. Naturally, we set
[a :∞] , {i ∈ Z+ | i ≥ a}.

Consider a three node setup consisting of a source, relay and
destination. All packet communication happening in source-
to-relay and relay-to-destination links are assumed to be
instantaneous, i.e., with no propagation delays. In each discrete
time slot t ∈ [0 :∞], soure has a message packet m(t) ∈ Fk

q

available, which needs to be communicated to the destination
via relay. Towards this, at time-t, source invokes a source-
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side encoder ES(t) : Fk
q × · · ·Fk

q︸ ︷︷ ︸
t + 1 times

→ Fn1
q to produce a source

packet x(t) ∈ Fn1
q , which is obtained as a function of message

packets {m(t′)}t′∈[0:t]. Source transmits x(t) to the relay over
a packet erasure channel. Let xR(t) denote the packet received
by relay. We have:

xR(t) =

{
∗, if x(t) is erased,
x(t), otherwise.

In time-t, once relay receives xR(t), it produces a relay
packet y(t) ∈ Fn2

q by invoking a relay-side encoder:

ER(t) : Fn1
q ∪ {∗} × · · · × Fn1

q ∪ {∗}︸ ︷︷ ︸
t + 1 times

→ Fn2
q .

The relay packet y(t) is a function of packets {xR(t′)}t′∈[0:t].
Relay transmits y(t) to the destination in time-t. Owing to
erasures in relay-to-destination link, the packet y

D
(t) received

by destination in time-t is given by:

y
D
(t) =

{
∗, if y(t) is erased,
y(t), otherwise.

At time-(t+ T ), destination uses decoder:

D(t) : Fn2
q ∪ {∗} × · · · × Fn2

q ∪ {∗}︸ ︷︷ ︸
t + 1 + T times

→ Fk
q

to obtain an estimate m̂(t) ∈ Fk×1
q of m(t) as a function

of received packets {y
D
(t′)}t′∈[0:t+T ]. The decoder is delay-

constrained as m(t) has to be estimated by time-(t+ T ). The
tuple ({ES(t)}, {ER(t)}, {D(t)}) constitutes an (n1, n2, k, T )q
streaming code. Rate of an (n1, n2, k, T )q streaming code is
naturally defined to be k

max{n1,n2} .

Definition II.1 (Erasure Sequences). A source-relay erasure
sequence denoted by e∞S , {eS,t}t∈[0:∞] is a binary sequence,
where eS,t = 1 iff xR(t) = ∗. Similarly, a relay-destination
erasure sequence e∞R , {eR,t}t∈[0:∞] will have eR,t = 1 iff
yD(t) = ∗
Definition II.2 (N -Erasure Sequences). Let N ∈ Z+. A
source-relay erasure sequence e∞S is defined to be an N -
erasure sequence if

∑
t∈[0:∞] eS,t ≤ N . Similarly, e∞R is an

N -erasure sequence if
∑

t∈[0:∞] eR,t ≤ N .

Definition II.3 ((N1, N2)-Achievability). An (n1, n2, k, T )q
streaming code is defined to be (N1, N2)-achievable if it is
possible to perfectly reconstruct all message packets (i.e.,
m̂(t) = m(t) for all t) at the destination in presence of (i)
any N1-erasure sequence e∞S and (ii) any N2-erasure sequence
e∞R .

It may be noted that for an (N1, N2)-achievable
(n1, n2, k, T )q streaming code, we have N1 + N2 ≤ T . This
is because, if N1 + N2 > T , in presence of erasure of
erasure patterns e∞S = {0, . . . , 0︸ ︷︷ ︸

i

, 1 . . . , 1︸ ︷︷ ︸
N1

, 0, . . .} and e∞R =

{0, . . . , 0︸ ︷︷ ︸
i+N1

, 1 . . . , 1︸ ︷︷ ︸
N2

, 0, . . .}, it is impossible for the destination

to recover m(i) by time-(i+ T ).

In a recent work [11], the authors provide (n1, n2, k, T )q
streaming codes for all parameters {T,N1, N2} which yield
rate:

RT,N1,N2 ,
T + 1−N1 −N2

T + 1−min{N1, N2}
. (1)

The codes presented in [11] are state-independent in the
sense that relay-side encoding at time-t performed by ER(t)
does not depend on the erasure pattern {eS,t′}t′∈[0:t] observed
thus far by the relay. In contrast, in the present paper, we
consider state-dependent streaming codes for all parameters
{T,N1, N2}. If N1 ≥ N2, rate achievable by our codes match
(1). However, when N1 < N2, our codes offer a strict rate
improvement over (1).

Remark II.1. Error protection provided by (N1, N2)-
achievable (n1, n2, k, T ) streaming codes may appear to be
limiting, as they consider only N1 erasures across all time
slots [0 : ∞] in source-relay link and N2 erasures across
all time slots [0 : ∞] in relay-destination link. However,
owing to the delay-constrained decoder, these codes can in
fact recover from any e∞S , e∞R which satisfy:

∑i+T
t′=i eS,t ≤ N1

and
∑i+T

t′=i eR,t ≤ N2 for all i ∈ [0 : ∞]. i.e., in any sliding
window of T+1 consecutive time slots, source-relay and relay-
destination links see at most N1 and N2 erasures, respectively.

III. PROPOSED CODING SCHEME

In this section, we present the code construction and the
results of such streaming code. For space and clarity reasons,
we present an example that highlights the main concept ideas
and a general sketch of the code construction algorithm. A
complete description of the scheme can be found in [].

Theorem 1. For any N1, N2 and T , there exists an
(N1, N2)-achievable (n1, n2, k, T )q streaming code with rate
R = min (R1, R2) where

R1 =
T + 1−N1 −N2

T + 1−N2
(2)

R2 =
T + 1−N2

T + 1 +
∑N1

i=0
N1−i

T+1−N2−(N1−i) + δ
(3)

and where δ is an overhead which goes to 0 as q →∞.

Remark III.1. In Theorem 1, the δ term represents the fact
that, since the relay is changing its coding strategy according
to the erasure pattern that has occurred in the link from
source to relay, that erasure pattern must also be informed
to the destination by the relay. In order to keep it simpler, we
present our examples and highlight the main ideas assuming
the destination is given the erasure pattern that has occurred
from source to relay. In the full proof, we show that the δ term
can be easily bounded and goes to 0.

Corollary 1. For any T and N2 > N1, for a sufficiently
large q, there exists an (N1, N2)-achievable channel-state-
dependent (n1, n2, k, T )q streaming code that achieves a rate
(strictly) higher than R = T+1−N1−N2

T+1−N1
which is the rate

achieved by channel-state-independent (N1, N2)-achievable
streaming codes [11].
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A. Main Ideas

Our streaming code differs from the one presented in [11]
mainly in its relaying function. The encoding function from
source to relay follows the same core idea. However, the re-
laying function differs greatly by employing the knowledge of
the erasure pattern that has occurred. Below, we highlight the
two main concepts which allow us to exploit that knowledge.

1) Variable Rate: In our coding scheme, from relay to des-
tination, each message packet is transmitted using a different
rate, based on the erasure pattern its respective source packet
has been subject to in the link from source to relay. In [11],
each message is transmitted assuming it has been subject to the
worst case erasure pattern, which leads to every message being
transmitted with an effective delay T ′ = T − N1 from relay
to destination. However, note that, for example, if a source
packet has not been erased from source to relay, the relay
can transmit the message with effective delay T ′ = T , and
it is guaranteed that some source packets will not be erased.
Transmitting these packets with a higher rate will lead to an
overall higher rate, as will be seen later. Note that it can also
lead to a variable streaming code rate, however, we handle
that by zero padding.

2) Noisy Relaying: In [11], the relay only transmits infor-
mation about symbols it has already fully recovered. In this
work, the relay transmits symbols that contain interference
caused by past messages. Because the destination is guaranteed
to recover packets sequentially, this interference is guaranteed
to be cancelled by the deadline.

B. Example

Consider, for example, a network with N1 = 2, N2 = 3 and
T = 6. Let us consider k = 24, that is, each message packet
consists of 24 symbols. We denote by mi(t) the ith message
symbol at time t. We use the notation a : i : b = {a, a+ i, a+
2i, . . . , b} and ma:i:b(t) =

[
ma(t),ma+i(t), . . . ,mb(t)

]
.

As we show next, the source is using the same coding
scheme as [11] which amounts to a systematic transmission
with diagonally interleaved block codes which results in
transmitting at rate of 24/48 = 1/2.

First, let us consider the scenario where the erasures in the
first link occur in a burst. As can be seen in Fig. 1, the relay
starts transmitting source packets that have not been erased
immediately with rate 4/7. This can be seen, for example,
for m(3). On the other hand, source packets that are subject
to erasures are transmitted with lower rate, since they need
to be transmitted “faster” (i.e., with a smaller effective delay).
Thus, it can be seen that m(4) is transmitted with rate 3/6 and
m(5) is transmitted with rate 2/5. This highlights the variable
rate aspect of our coding strategy. Not only that, note that
the relay is unable to recover the symbols m2:2:16(5) at time
6. If the relay would wait until it can be recovered without
the interference from m(4), then m(5) would also need to
be transmitted with rate 2/5. In order to be able to transmit
it with a better rate, we instead transmit the noisy symbols
m′2:2:16(5) = m2:2:16(5)+m1:2:15(4). Then, at the destination,
since it can recover m(4) entirely at time 10, it can cancel out

the interference at time 11 and recover m(5). This highlights
the concept of noisy relaying.

Time 3 4 5 6 7 8 9 10 11

So
u

rc
e

m1:2:24(3) m1:2:24(4) m1:2:24(5) m1:2:24(6) m1:2:24(7) m1:2:24(8) m1:2:24(9) m1:2:24(10) m1:2:24(11)

m2:2:24(3) m2:2:24(4) m2:2:24(5) m2:2:24(6) m2:2:24(7) m2:2:24(8) m2:2:24(9) m2:2:24(10) m2:2:24(11)

m2:2:24(1) + 
m2:2:24(2)

m1:2:24(2) + 
m2:2:24(3)

m1:2:24(3) + 
m2:2:24(4)

m1:2:24(4) + 
m2:2:24(5)

m1:2:24(5) + 
m2:2:24(6)

m1:2:24(6) + 
m2:2:24(7)

m1:2:24(7) + 
m2:2:24(8)

m1:2:24(8) + 
m2:2:24(9)

m1:2:24(9) + 
m2:2:24(10)

m1:2:24(0) + 
2m2:2:24(1)

m1:2:24(1) + 
2m2:2:24(2)

m1:2:24(2) + 
2m2:2:24(3)

m1:2:24(3) + 
2m2:2:24(4)

m1:2:24(4) + 
2m2:2:24(5)

m1:2:24(5) + 
2m2:2:24(6)

m1:2:24(6) + 
2m2:2:24(7)

m1:2:24(7) + 
2m2:2:24(8)

m1:2:24(8) + 
2m2:2:24(9)

Time 3 4 5 6 7 8 9 10 11

R
el

ay

m1:4:24(3) m1:4:24(6) m1:4:24(7) m1:4:24(8) m1:4:24(9) m1:4:24(10) m1:4:24(11)

m2:4:24(2) m2:4:24(3) m2:4:24(6) m2:4:24(7) m2:4:24(8) m2:4:24(9) m2:4:24(10)

m3:4:24(1) m3:4:24(2) m3:4:24(3) m3:4:24(6) m3:4:24(7) m3:4:24(8) m3:4:24(9)

m4:4:24(0) m4:4:24(1) m4:4:24(2) m4:4:24(3) m4:4:24(6) m4:4:24(7) m4:4:24(8)

P(0)
1:1:6(4) P(1)

1:1:6(5) P(2)
1:1:6(6) P(3)

1:1:6(7) P(6)
1:1:6(10) P(7)

1:1:6(6)

P(0)
1:1:6(5) P(1)

1:1:6(6) P1:1:6
(2)(7) P(3)

1:1:6 (8) P(6)
1:1:6(11)

P(0)
1:1:6(6) P(1)

1:1:6(7) P(2)
1:1:6(8) P(3)

1:1:6(9)

m2:2:24(4) m1:2:24(4)
P(4)

1:1:12(8)=
m2:2:24(4)+ 
m1:2:24(4)

P(4)
1:1:12(9)=

m2:2:24(4)+ 
2m1:2:24(4)

P(4)
1:1:12(10)=

m2:2:24(4)+ 
3m1:2:24(4)

m’2:2:16(5)=m1:2:16(4) 
+ m2:2:16(5)

m1:2:16(5) m17:1:24(5) P(5)
1:1:8(9) P(5)

1:1:8(10) P(5)
1:1:8(11)

Fig. 1: T = 6, N1 = 2 N2 = 3 example of burst erasures in
the link between source and relay

Let us now consider the scenario where the erasures are
spaced. Since m(4) is subject to only one erasure, we start
transmitting it attempting to transmit with rate 3/6, similar to
how the packet m(5) was transmitted in the previous example.
However, another erasure occurs at time 6 - thus, we now don’t
have enough symbols to keep transmitting with such high rate,
and instead we simply transmit the remaining symbols that
have been previously recovered at time 5. Then, at time 7, we
start transmitting m(6) with rate 3/6, and we change the rate
used for m(4) from 3/6 to 2/5, as it now has been subject to
two erasures. This highlights the adaption our relaying scheme
performs based on the observed erasure pattern.

Time 3 4 5 6 7 8 9 10 11 12

So
u

rc
e

m1:2:24(3) m1:2:24(4) m1:2:24(5) m1:2:24(6) m1:2:24(7) m1:2:24(8) m1:2:24(9) m1:2:24(10) m1:2:24(11) m1:2:24(12)

m2:2:24(3) m2:2:24(4) m2:2:24(5) m2:2:24(6) m2:2:24(7) m2:2:24(8) m2:2:24(9) m2:2:24(10) m2:2:24(11) m2:2:24(12)

m2:2:24(1) + 
m2:2:24(2)

m1:2:24(2) + 
m2:2:24(3)

m1:2:24(3) + 
m2:2:24(4)

m1:2:24(4) + 
m2:2:24(5)

m1:2:24(5) + 
m2:2:24(6)

m1:2:24(6) + 
m2:2:24(7)

m1:2:24(7) + 
m2:2:24(8)

m1:2:24(8) + 
m2:2:24(9)

m1:2:24(9) + 
m2:2:24(10)

m1:2:24(10) + 
m2:2:24(11)

m1:2:24(0) + 
2m2:2:24(1)

m1:2:24(1) + 
2m2:2:24(2)

m1:2:24(2) + 
2m2:2:24(3)

m1:2:24(3) + 
2m2:2:24(4)

m1:2:24(4) + 
2m2:2:24(5)

m1:2:24(5) + 
2m2:2:24(6)

m1:2:24(6) + 
2m2:2:24(7)

m1:2:24(7) + 
2m2:2:24(8)

m1:2:24(8) + 
2m2:2:24(9)

m1:2:24(9) + 
2m2:2:24(10)

Time 3 4 5 6 7 8 9 10 11 12

R
el

ay

m1:4:24(3) m1:4:24(5) m1:4:24(7) m1:4:24(8) m1:4:24(9) m1:4:24(10) m1:4:24(11) m1:4:24(12)

m2:4:24(2) m2:4:24(3) m2:4:24(5) m2:4:24(7) m2:4:24(8) m2:4:24(9) m2:4:24(10) m2:4:24(11)

m3:4:24(1) m3:4:24(3) m3:4:24(3) m3:4:24(5) m3:4:24(7) m3:4:24(8) m3:4:24(9) m3:4:24(10)

m4:4:24(0) m4:4:24(1) m4:4:24(2) m4:4:24(3) m4:4:24(5) m4:4:24(7) m4:4:24(8) m4:4:24(9)

P(0)
1:1:6(4) P(1)

1:1:6(5) P(2)
1:1:6(6) P(3)

1:1:6(7) P(5)
1:1:6(9) P(7)

1:1:6(11) P(8)
1:1:6(12)

P(0)
1:1:6(5) P(1)

1:1:6(6) P(2)
1:1:6(7) P(3)

1:1:6 (8) P(5)
1:1:6(10) P(7)

1:1:6(12)

P(0)
1:1:6(6) P(1)

1:1:6(7) P(2)
1:1:6(8) P(3)

1:1:6(9) P(5)
1:1:6(11)

m2:2:16(4)

m18:2:24(4)

m1:2:24(4)
P(4)

1:1:12(8)=
m2:2:24(4) + 
m1:2:24(4)

P(4)
1:1:12(9)=

m2:2:24(4) + 
2m1:2:24(4)

P(4)
1:1:12(10)=

m2:2:24(4) + 
3m1:2:24(4)

m2:2:16(6) m1:2:16(6) m17:1:24(6) P(5)
1:1:8(9) P(5)

1:1:8(10) P(5)
1:1:8(11)

Fig. 2: T = 6, N1 = 2 N2 = 3 example of spaced erasures
in the link between source and relay

In general, our scheme attempts to transmit each source
packet with the maximal possible rate, and, as soon as it
observes a new erasure, it reduces the rate of transmission
of the affected source packets. Further, it also transmits noisy
symbols when required, knowing that the noise can always
be cancelled at the destination due to the nature of the delay
constraint. In the following section we present the general code
construction.
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C. Code Construction
For given parameters {N1, N2, T}, we set message packet,

source packet sizes as the following:

k ,
N1∏
i=0

T + 1−N2 − i, (4)

n1 , (T + 1−N2)

N1−1∏
i=0

T + 1−N2 − i, (5)

n2 , (T + 1−N1)

N1∏
i=1

T + 1−N2 − i

+

N1∑
l=1

N1∏
i=0,i6=l

T + 1−N2 − i. (6)

This choice is to ensure that every subcode from relay to
destination, which have a rate of the form (T + 1 − N2 −
i)/(T + 1− i), can be met with integer parameters.

Let message packet m(t) be represented as a column vector
of the form:

m(t) ,
[
m0(t) m1(t) · · · mk−1(t)

]T
.

For consistency in notation, we assume that m(t) , 0, if t < 0.

D. Source-to-Relay Encoding
As mentioned previously, the source-to-relay encoding is

fairly similar to the previous work on [11]. The only major
difference is that we use multiple “layers” of the same code.
This can be seen in the previous example, where we use 12
layers of a 2/4 code, that is, we replicate a 2/4 diagonally-
interleaved MDS code twelve times.

In general, we use `′ =
∏N1−1

i=0 (T + 1 − N2 − i) layers
of diagonally-interleaved MDS codes with parameters k′ =
T +1−N1−N2 and n′ = T +1−N2. A complete description
of the construction of such codes can be found in the full paper
version in []. With such parameters, we have n1 = `′n′, which
equals (5).

Now, we make a major observation about such codes. Using
Lemma 3 from [11], we know that, if x(i) has been erased,
then `′ symbols of m(i) can be recovered at time i + N1,
another `′ symbols can be recovered at time i + N1 + 1,
and so on, until the entire message has been recovered. This
observation is a guarantee independent of erasure pattern.
However, considering the erasure pattern, we make a stronger
claim about the recovery of symbols and, especially, “noisy
symbols”, which we now define as estimates.

Definition III.1. We say m̃j(i) is an estimate of a source
symbol mj(i) if there exists a function Ψi,j such that
Ψi,j(m̃j(i), {m(t)}t∈[0:i−1]) = mj(i).

Proposition III.1. Assume the packet x(i) is erased. Then, `′

new estimates of symbols of m(i) can be recovered from each
subsequent non-erased packet x(i′), i′ > i, until estimates of
all symbols have been recovered.

What we mean by “new” is that the estimates we recover
from each non-erased packet are always estimates of symbols

for which we did not have an estimate yet. To understand
this definition and proposition, let us consider the examples
given previously. First, consider the example in Fig. 2. In
this example, it is straight forward that the relay can recover
12 symbols from m(4) at time 5 (from the first non-erased
packet after time 4) and another 12 symbols at time 7 (from
the second non-erased packet). However, in the example in
Fig. 1, the relay only has access to the so-called estimates of 12
symbols of m(5) at time 6, since there is still interference from
m(4). Nonetheless, as can be seen in the example and can be
shown to hold in general, relaying these estimates is enough,
since the destination will have access to previous messages by
the deadline of recovery.

E. Relay-to-Destination Encoding
Relay employs two different encoding mechanisms depend-

ing on whether the source packet x(t) sent from source is
successfully received (non-erased) or not (erased). In each
time-t, relay transmits a relay packet y(t) which is a function
of all non-erased source-to-relay source packets within the set
{x(t′)}t′∈[0:t]. For ease of exposition, we will view each y(t)
as an unordered set of n2 symbols, rather than a column vector.

1) x(t) is Non-Erased: If a source packet x(t) is
successfully received by the relay, owing to the use
of systematic source-to-relay encoding, the whole
message packet m(t) of size k (see (4)) is known to
the relay in time-t itself. Relay will partition m(t)
into `′′ ,

∏N1

i=1 (T + 1−N2 − i) message sub-packets
{m′(i)(t)}i∈[0:`′−1], each of size k′′ , T + 1 − N2.
Relay will then employ diagonal interleaving involving
[n′′ , T + 1, k′′]-systematic-MDS codes for each of
{m′(i)(t)}i∈[0:`′−1] in the following manner. Let G , [Ik′′ P ]
denote the generator matrix of the [n′′, k′′]-MDS code,
m′(0)(t) , [m

′(0)
0 (t) m

′(0)
1 (t) · · · m

′(0)
k′′−1(t)]> =

[m0(t) m1(t) · · · mk′′−1(t)]>, m′(1)(t) ,
[m
′(1)
0 (t) m

′(1)
1 (t) · · · m

′(1)
k′′−1(t)]> =

[mk′′(t) mk′′+1(t) · · · m2k′′−1(t)]> and so on. Let

[p(i)(t+k′′) p(i)(t+k′′+1) · · · p(i)(t+n′′−1)] = m′(i)(t)>P.

Then, for all i ∈ [0 : `′′ − 1], the relay adds
m
′(i)
1 (t) · · · m′(i)k′′−1(t), p(i)(t+k′′) p(i)(t+k′′+1) · · · p(i)(t+

n′′−1) to y(t), y(t+1), . . . , y(t+n′−1) , y(t+T )}, respec-
tively. Thus, each non-erased source packet x(t) contributes `′′

symbols to each of the relay packets y(t), y(t+ 1), . . . , y(t+
n′ − 1). Note that there is a slight difference (apart from
the difference in MDS code parameters) in the way message
symbols are arranged in the diagonal interleaving techniques
employed at source-side encoder and relay-side encoder. In the
source from relay link, symbols of each message sub-packet
m(i)(t) appear vertically (within the same coded sub-packet).
However, in relay-side diagonal interleaving, symbols of each
message sub-packet appear diagonally, i.e., they are part of the
same MDS codeword.

If x(t) is erased, relay has no information of m(t) in
time-t and relay will follow a different encoding mechanism.
Relay will include {C(t; 1), C(t; 2), . . . , C(t;T )} as a part of
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y(t+1), y(t+2), . . . , y(t+T ), respectively. Here, each C(t; j)
is a set of code symbols (to be viewed as a column vector)
computed by relay, as a function of all non-erased source
packets in time slots [0 : t + j]. The size of each C(t; j)
can vary anywhere in [0 : `′]. In the remainder of this section,
we will discuss (i) how to determine C(t; j)’s, (ii) how we
obtain a relay packet size which matches (6) and (iii) how
recoverability of each m(t) is guaranteed at destination by
time-(t + T ) despite the possibility of N2 erasures in relay-
to-destination link.

2) x(t) is Erased: Let It , {t1, t2, . . . , tT+1−N2−N1}
denote the first T + 1−N2 −N1 time slots in [t + 1 : t +
T ] during which there are no erasures in source-to-relay link.
Based on Proposition III.1, relay has access to `′j estimates
of symbols of m(t) by time-tj , j ∈ [1 : T + 1−N2 −N1].

Recall that C(t; i), i ∈ [1 : T ] consists of a set of code
symbols which are to be included a part of relay packet
y(t+ i). Each C(t; i) has size αt,i ∈ [0 : `′] and is computed
purely as a function of estimates of m(t) received in time
slots {tj , j ∈ [1 : T + 1 − N2 − N1] | tj ≤ t + i}.
Each αt,i is determined on-the-fly by relay in time-(t + i)
based on erasure pattern in the source-relay link in time slots
[t : t + i]. C(t; i) is obtained by “slicing” a codeword of
a systematic MDS code in the following manner. Consider
a “long” systematic [nlong, klong]-MDS code, where nlong ,∑

i∈[1:T ] αt,i, klong , (T + 1 −N2 −N1)`′ = k. The length-
nlong row-vector C(t)> , [C(t; 1)> C(t; 2)> · · · C(t;T )>]
is then a codeword of this [nlong, klong]-MDS code. Initial k
code symbols of C(t)> are k estimates of the symbols in
m(t). Precisely, the first `′ code symbols of C(t)> are the `′

estimates of m(t) determined by relay in time-t1, the next `′

code symbols are the `′ estimates determined in time-t2 and
so on. The last nlong − k code symbols of C(t)> are MDS
parity symbols obtained as a function of the initial k code
symbols of C(t)>. In the following, we discuss how {αt,i}
are determined, which essentially completes the description of
relay-to-destination encoder.

Consider time slots [t : t+T ]. By assumption, x(t) is erased
and there can be at most N1 − 1 more erasures in time slots
[t+1 : t+T ] (in source-to-relay link). For j ∈ [1 : N1−1], let
t+vj denote the j-th time slot within [t+1 : t+T ] where there
is an erasure. If there are only l < N1 − 1 erasures in time
slots [t+ 1 : t+ T ], we set vj′ , T + 1, j′ ∈ [l+ 1 : N1− 1].
Also, let v0 , 1, vN1 , T . Let κt(t+i) denote the cumulative
number of estimations of message symbols in m(t) available
to relay by time-{t+ i}. The values of αt,i’s are obtained by
relay in the following manner:
• Step-1: Initialize i = 1. Go to next step.
• Step-2: Let the number of erasures in time slots [t + 1 :
t+ i−1] be j∗ ∈ [0 : N1−1]. If x(t+ i) is not erased or
κt(t+ i) = k, αt,i = k

T−N2−j∗ , `j∗ . Go to next step.
• Step-3 If x(t + i) is erased and κt(t + i) < k, αt,i =

min{`j∗ , κt(t+ i)−
∑

a∈[1:i−1] αt,a}. Go to next step.
• Step-4 Increment i by 1. If i ≤ T , go to Step-2.
To illustrate, let us again look at the examples. Let us

analyze the code used for the transmission of packet m(4). In

Fig. 1, at time 5, we have no symbols to transmit, so we have
α4,1 = 0. Afterwards, we transmit at constant α4,i = 24

2 = 12,
where 2 = T −N2− 1. On the other hand, in Fig. 2, we have
α4,1 = 8, because j∗ = 0 (recall that j∗ represents how many
erasures happened from time t + 1 up to t + i − 1). Then,
α4,2 = 4, because x(6) is erased, thus we only transmit the
remaining symbols. Finally, we have α4,i = 12 for all other
packets. Since in both examples we recover 12 symbols of
m(4) from each non-erased packet, we always have enough
symbols. This holds in general, since αt,i ≤ `′.

This is just a greedy algorithm such that as many symbols
are included in C(t; i) subject to following constraints:

1) αt,i ≤ `j∗ ,
2) C(t; i) is a function of message symbol estimates of m(t)

obtained by relay in non-erased time slots among [t+ 1 :
t+ i],

3) C(t)> , [C(t; 1)> C(t; 2)> · · · C(t;T )>] is a code-
word of a systematic [nlong, klong]-MDS code. Initial k
code symbols k message symbol estimates of m(t).

3) Worst-Case Length of Relay Packets: Using this code
construction, we can easily find the maximum packet length
and zero-pad the packets with smaller length. The analysis is
omitted due to space limitations, but it leads to (6) plus a small
overhead of logq

(
T+1
N1

)
, used to inform the destination about

the erasure pattern that has occurred in the link from source
to relay. By making q → ∞, we have n2 equal to (6). This
shows that the rate achieved by our coding scheme is as given
in Theorem 1.

4) Recoverability of m(t) at Destination by Time-(t+ T ):
Now, we should show that, for any erasure patterns in each
link, the proposed scheme is (N1, N2)-achievable, which
would then complete the theorem. We present a sketch of the
analysis here, and the complete proof can be found in [].

Proposition III.2. Using our coding scheme, if there are at
most N2 erasures from relay to destination, the destination is
able to recover an estimate m̃(t) of m(t) at time t+ T .

The sketch is as follows: first, consider the scenario where
x(t) has not been erased. Then, since the source packet m(t)
is transmitted using layers of a [T + 1, T + 1 − N2] MDS
code, it can be recovered if there are at most N2 erasures
(note n − k = N2). On the other hand, if x(t) has been
erased, we may consider two different scenarios. In the first
scenario, assume the relay always has enough symbols to
transmit. Then, it can be shown that, in the long MDS code,
the number of symbols in any T − N2 non-erased packets
is at least k, thus we can recover k estimates of symbols of
m(t). On the other hand, if the relay does not have enough
symbols at some point (e.g., in Fig. 2), then we can count
the number of erased symbols and subtract it from the total
number of symbols. Doing so will again lead to the number of
non-erased symbols being at least k. Thus, in any scenario, we
can always recover k estimates of m(t). Finally, by noting that
m̃(0) is exactly m(0) (as all previous packets are known from
assumption), and applying an induction argument, all original
source packets can be recovered with delay T .
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